
IDEAL MHD STABILITY THEORY… 
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Aix Marseille University 

… and tokamak operational limits 



Content of this lecture

• Reduced ideal MHD model

• Current driven instabilities → current limit

• Pressure driven instabilities → beta limit
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How does the current limit appear in an MHD model?

[Greenwald

2002]
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Additionally: ideal MHD beta limit
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Constructing the reduced ideal MHD model I

• ideal MHD equations:

charge balance: ∇ · j = 0 Ohm’s law: E+u×B = (ηj)

Ampère’s law: ∇×B = µ0j press. bal.: ∂t p+∇ · (pu)+ 2
3 p∇ ·u = 0

• reduced MHD approximation: “strong” external magnetic field B0

– perpendicular motion is described by drifts

ue,i⊥
=

B×∇φ

B2
+

B×∇pe,i

neB2
+

miB

eB2
×

duE

dt
, j⊥ = en

(

ui⊥
−ue⊥

)

ExB drift uE diamagnetic drift polarization drift

– electromagnetic fields are described by potentials

E =
(

∂tψ−∇‖φ
)B0

B0
−∇⊥φ , B = B0+

B0

B0
×∇ψ
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Constructing the reduced ideal MHD model II

• charge balance: ∇ · j = ∇ ·

(

B×∇p

B2
+

nmi

B2
B×

duE

dt

)

+∇‖ j‖ = 0

– with ∇ ·
B×∇p

B2
≈ 2

(

B

B2
×κ

)

·∇p where κ =
(

b̂ ·∇
)

b̂

magn. curvature

– and ∇ ·

(

B×
duE

dt

)

≈−∇ ·
d

dt
∇⊥φ ≈−

d

dt
∇2
⊥φ

– gives
nmi

B2

d

dt
∇2
⊥φ = ∇‖ j‖+2

(

B

B2
×κ

)

·∇p

• modelling of current driven instab.: curvature+ polarization current not needed

→ ∇‖ j‖ = 0 [ but for pressure driven instabilites → see later ]
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Modelling current driven instabilities

• magnetic field: B=B0+
B0

B0
×∇ψeq+

B0

B0
×∇ψ (equilibrium + perturbation)

• Ampère’s law:

– equilibrium: µ0jeq = ∇×

(

B0+
B0

B0
×∇ψeq

)

– perturbation: µ0 j̃‖ ≈
B0

B0
·

[

∇×

(

B0

B0
×∇ψ

)]

≈ ∇2
⊥ψ

• charge balance: ∇‖ j‖ = 0

→

(

B0+
B0

B0
×∇ψeq

)

·∇∇2
⊥ψ+µ0

(

B0

B0
×∇ψ

)

·∇ jeq‖ = 0
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Basic view of a kink instability

[Garbet, cours Master SFP, AMU]

[ on blackboard ]

• straight wire carrying a current I0 = I0ez

• is placed in a uniform magnetic field parallel to

the direction of the wire, B = Bez

• is deformed helically:

x(z) = ξr cos(kz)ex+ξr sin(kz)ey+ zez

• current I flowing in the twisted wire: . . .

• Lorentz force I×B acting on twisted wire: . . .

• equation of motion → growth rate . . .
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Kink instability in cylindrical geometry

[Lackner in Fusion Physics]

• equilibrium: B0 = B0ez , ez×∇ψeq(r) =
dψeq

dr
ey

• safety factor:
1

q(r)
=

R0

rB0

dψeq

dr

• charge balance:

B0

(

ez+
r

R0q
ey

)

·∇∇2
⊥ψ+µ0(ez×∇ψ)·∇ jeq‖ = 0

• perturbation: ψ = ψ̃(r)exp

(

imθ− in
z

R0

)

– resonant at r = rs with q(rs) =
m
n

– marginally stable!

– Does such a solution exist?
8



Kink instability in cylindrical geometry

[Lackner in Fusion Physics]

B0

(

ez+
r

R0q
ey

)

·∇∇2
⊥ψ+µ0 (ez×∇ψ) ·∇ jeq‖ = 0

→ −
B0

R0

(

n−
m

q

)

∇2
⊥ψ−µ0

m

r

d jeq‖

dr
ψ = 0

→





1

r

d

dr

(

r
d

dr

)

−
m2

r2
+

µ0
n
m − 1

q

R0

rB0

d jeq‖

dr



 ψ̃ = 0

exact solution for m = 1, n = 1:

ψ̃(r) =

{

r
(

1− 1
q(r)

)

0 < r < rs

0 rs < r < a
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Kink instability in cylindrical geometry

[Lackner in Fusion Physics]

• exact solution for m = 1, n = 1 unstable if q(0)< 1

(internal kink)

• for m,n 6= 1, for a step current profile

jeq‖(r) =

{

− j′0r0 0 < r < r0

0 r0 < r < a

continuous solutions can be constructed

ψ̃(r) =



























ψ0

(

r
r0

)m
0 < r < r0

ψ0

(

r
rs

)m
−
(

r
rs

)−m

(

r0
rs

)m
−
(

r0
rs

)−m r0 < r < rs

0 rs < r < a
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Kink instability in cylindrical geometry

[Lackner in Fusion Physics]

discontinuity of current profile

d jeq‖

dr
= j′0r0δ(r− r0)

(

j′0 < 0
)

implies jump in slope of ψ̃ ; solution exists if

−
2m

r0

1

1−
(

r0
rs

)2m
=

µ0
1
q −

n
m

R0

B0
j′0

i.e. for a negative current gradient located inside the

resonant surface (r0 < rs) (internal kink).
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Kink instability in cylindrical geometry

[Lackner in Fusion Physics]

• similar analysis is possible for external kinks (wall

pushed to ∞)

• m = 1, n = 1 external kink is unstable if q(a) < 1

(Kruskal Shafranov limit)

• m,n 6= 1 external kink modes imply even stronger

limits → see e.g. diagram by Wesson
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Internal + external kink limit current to qa & 2−3qa & 2−3qa & 2−3

[Wesson,

Tokamaks]
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Operational space

[Greenwald

2002]
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Pressure driven modes: back to MHD model

• ideal MHD equations:

charge balance: ∇ · j = 0 Ohm’s law: E+u×B = (ηj)

Ampère’s law: ∇×B = µ0j press. bal.: ∂t p+∇ · (pu)+ 2
3 p∇ ·u = 0

• reduced MHD approximation:

– charge balance:
nmi

B2
(∂t +uE ·∇)∇2

⊥φ = ∇‖ j‖+2

(

B

B2
×κ

)

·∇p

– Ohm’s law: ∂tψ = ∇‖φ+

(

η

µ0
∇2ψ

)

– Pressure balance: (∂t +uE ·∇) p =
10

3
p0

(

B

B2
×κ

)

·∇φ
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Basic view of an interchange instability

• simple “slab” geometry: B0 = B0ez, κκκ = κêx

• equilibrium: φeq = 0, ψeq = 0, peq = p′0 (x−a)

• perturbation: φ̃, ψ̃, p̃ ∼ exp
(

ikxx+ ikyy+ ik‖z+ γt
)

• linear disperson relation: [ blackboard ]

γ2 =−v2
Ak2

‖+ v2
Aκβ′

k2
y

k2
⊥

with β′ =
2µ0p′0

B2
0

• instability if stabilization by field line bending (v2
Ak2

‖
) is small:

κβ′ > k2
‖ more generally: κκκ ·∇β > k2

‖
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Interchange mode in toroidal geometry

• equilibrium pressure gradient: ∇β∼−er

• main contribution to magnetic curvature

comes from toroidal field: κκκ =−1
ReR

• interchange modes ∼ eimθ “feel” average

curvature: 〈κκκ · er〉θϕ = −r

(qR0)
2

(

1−q2
)

r

Bϕ

θB

R

Z

• estimation for k‖: ik‖φ̃ = ∇‖φ̃ ≈
i

R0

(

m

q
−n

)

φ̃ ,
1

q
≈

1

q(rs)
−

q′

q2

∣

∣

∣

∣

rs

(r− rs)

→ k‖φ̃ ≈−
m

rs
(r− rs)

s

R0q
φ̃ → k‖ ∼−

s

R0q
with s =

r

q

dq

dr
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Interchange modes are stable if q > 1

r

Bϕ

θB

R

Z

stable if 〈κκκ · er〉θϕ β′ < k2
‖

→ r

q2R2
0

(1−q2)β′ < 1
4

s2

q2R2
0

(Mercier criterion)
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Ballooning modes can be unstable even if q > 1

pp

axis of symmetry

g

θ
r

in poloidal plane (r,θ),

magn. curvature depends on θ electrostatic potential φ

of a n = 18 ballooning mode

(radial dim. stretched × 4)
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Stability limit of ballooning mode

expressed as function of

• magnetic shear

s =
r

q

dq

dr

• normalized pressure gradient

α =−Rq2dβ

dr

• first stability region

α < 0.6s

a=0.6s
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Ideal MHD beta limit

 

• for ballooning modes, α < 0.6s

leads to:

βN =
β[%]a[m]B[T]

I[MA]
< 3.5

• rather complete stability analysis

including kink modes → βN < 2.8

(Troyon limit)
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Operational domain for tokamaks

[

density limit (Greenwald): n̄e

[

1020 m−3
]

<
I[MA]

πa2[m2]

]
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Leture on IDEAL MHD STABILITY

Additional notes

P. Beyer / Aix Marseille University

Basi view of a kink instability

(refering to p. 7 of the leture)

The urrent �owing in the twisted wire is

I = I0

dx

dz
∣

∣

dx

dz

∣

∣

=
I0

√

1 + ξ2k2
[−ξk sin(kz)ex + ξk cos(kz)ey + ez] .

The Lorentz fore ating on the twisted wire is

I×B =
I0B

√

1 + ξ2k2
[ξk cos(kz)ex + ξk sin(kz)ey]

The equation of motion of the twisted wire is

µ
d2
x

dt2
= µ

[

d2ξ

dt2
cos(kz)ex +

d2ξ

dt2
sin(kz)ey

]

= I×B .

where µ is the mass per unit length of the wire. The equation of motion for the deformation amplitude

therefore is

µ
d2ξ

dt2
=

I0Bk
√

1 + ξ2k2
ξ .

For small deformations suh that ξ2k2 ≪ 1, the amplitude grows exponentially ξ ∼ eγt with

γ2 =
I0Bk

µ
.

Basi view of an interhange instability

(refering to p. 15, 16 of the leture)

With

•

(

B

B2
× κ

)

· ∇p =
κ

B
(ez × ex) · ∇p =

κ

B

∂p

∂y
= i

κ

B
kyp̃

• uE · ∇p =

(

B

B2
×∇φ

)

· ∇p ≈

(

B

B2
×∇φ̃

)

· p′
0
ex = −i

p′
0

B
kyφ̃

the harge balane, Ohm's Law and pressure balane give

−
nmi

B2
γk2⊥φ̃ = −ik‖

k2⊥
µ0

ψ̃ + 2i
κ

B
kyp̃ (1)

γψ̃ = ik‖φ̃ (2)

γp̃ = i
p′
0

B
kyφ̃+ i

10

3
p0
κ

B
kyφ̃ = i

p′
0
+ 10

3
p0κ

B
kyφ̃ (3)



where k2⊥ = k2x + k2y. Using (2) and (3) to replae ψ̃ and p̃ in (1), respetively, one obtains the

dispersion relation

[

−
nmi

B2
γk2⊥ + ik‖

k2⊥
µ0

ik‖
γ

− 2i
κ

B
ky

i
(

p′
0
+ 10

3
p0κ

)

γB
ky

]

φ̃ = 0

→ −
nmik

2

⊥

B2
γ2 = k2‖

k2⊥
µ0

− 2
κ
(

p′
0
+ 10

3
p0κ

)

B2
k2y

→ γ2 = −
B2

µ0nmi

k2‖ +
2κ

(

p′
0
+ 10

3
p0κ

)

nmi

k2y
k2⊥

= −v2Ak
2

‖ + v2Aκβ
′
k2y
k2⊥

where in the last step the Alfvén veloity vA = B/
√
µ0nmi and the plasma beta gradient β ′ =

2µ0p
′
0
/B2

have been introdued. Addtionally, p0κ≪ p′
0
has been used as p0κ ∼ p0/R and p′

0
∼ p0/Lp

with Lp ≪ R.
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